Development of a physicomathematical model of distraction osteogenesis to improve the treatment of transverse dentofacial anomalies in pediatric patients
https://doi.org/10.33925/1683-3031-2025-910
Abstract
Relevance. The wide range of available treatment methods often complicates the selection of an appropriate therapeutic strategy. The developed physicomathematical model enabled investigation of maxillary expansion biomechanics and supported the selection of an appropriate treatment approach.
Materials and methods. Based on an analysis of craniofacial computed tomography (CT) data, a physicomathematical modeling method for distraction osteogenesis was developed to study the biomechanics of maxillary expansion and to facilitate surgical planning in maxillofacial surgery.
Results. A physicomathematical model of distraction osteogenesis was developed that simulates the biomechanics of maxillary expansion during the distraction process. This model supports surgical planning and enables assessment of relapse risk.
Conclusion. The proposed modeling approach proved effective in optimizing treatment planning for transverse dentofacial anomalies in pediatric patients undergoing distraction osteogenesis.
About the Authors
D. R. MinnakhmetovaRussian Federation
Diana R. Minnakhmetova, DDS, PhD student, Department of the Pediatric Maxillofacial Surgery
Dolgorukovskaya St., 4, Moscow, 127006
O. Z. Topolnitsky
Russian Federation
Orest Z. Topolnitsky, DDS, PhD, DSc, Professor, Honored Doctor of the Russian Federation Head of the Pediatric Maxillofacial Surgery
Moscow
A. D. Dudetsky
Russian Federation
Anton D. Dudetsky, student, Department of the Higher Mathematics, Institute of Artificial Intelligence (III)
Moscow
I. M. Panchenko
Russian Federation
Irina M. Panchenko, Research Engineer, Special Design Bureau No.1
Moscow
E. E. Glukhonemykh
Russian Federation
Yelizaveta E. Glukhonemykh, student, Department of the Higher Mathematics, Institute of Artificial Intelligence (III)
Moscow
A. A. Barinova
Russian Federation
Alexandra A. Barinova, Student, Department of the Higher Mathematics, Institute of Artificial Intelligence (III)
Moscow
E. E. Agoshkova
Russian Federation
Elena E. Agoshkova, student, Department of the Higher Mathematics, Institute of Artificial Intelligence (III)
Moscow
A. M. Ryabchikova
Russian Federation
Anna M. Ryabchikova, Staff Member, Department of Electrical Robotics
A. A. Kalitnik
Russian Federation
Alina A. Kalitnik, student, Department of the Biophysics, Landau School of Physics and Research, Moscow Institute of Physics and Technology (National Research University)
Moscow
I. A. Khodakovskiy
Russian Federation
Igor A. Khodakovsky, Project Manager, Special Design Bureau No.1
Moscow
References
1. Mikhailova AS, Yudintsev MA. Prevalence of dentoalveolar anomalies and deformities in children and adolescents in the Russian Federation. Young Scientist. 2021;(21):148-151 (In Russ.). Available from: https://moluch.ru/archive/363/81430/
2. Gordina GS, Glushko AV, Klipa IA, Drobyshev AYu, Serova NS, Fomynikh EV. The Use of Computed Tomography Data in Diagnosis and Treatment of Patients with Malocclusion Accompanied by the Narrowing of the Maxilla. Medical Visualization. 2014;(3):104-113 (In Russ.). Available from: https://medvis.vidar.ru/jour/article/view/54/0
3. Bazan AA, Drobysheva NS. Analysis of literature about methods of maxillary expansion. Endodontics Today. 2024;22(3):259-265 (In Russ.). doi: 10.36377/ET-0038
4. Losev FF, Arsenina OI, Shugaylov IA, Popova NV, Makhortova PI, Popova AV. Algorithms for orthodontic treatment of patients with maxillary constriction based on the stages of formation of the palatal suture. Stomatology. 2022;101(2):52 62 (In Russ.). doi: 10.17116/stomat202210102152
5. Slabkovskaia AB. Principles of treatment for children with transversal abnormalities of occlusion. Russian journal of stomatology. 2010;3(1):40-44 (In Russ.). Available from: https://www.elibrary.ru/item.asp?id=23341238
6. Slabkovskaia AB, Persin LS. Algorithms for diagnosing anomalies of transversal occlusion. Ortodontiya. 2007;(3):79 (In Russ.). Available from: https://www.elibrary.ru/item.asp?id=9606118
7. Angelieri F, Cevidanes LH, Franchi L, Gonçalves JR, Benavides E, McNamara JA Jr. Midpalatal suture maturation: classification method for individual assessment before rapid maxillary expansion. Am J Orthod Dentofacial Orthop. 2013;144(5):759-769. doi: 10.1016/j.ajodo.2013.04.022
8. Andreishchev AR, Mishustina JV. Osteotomy of the median palatine suture (sparing osteotomy in the maxilla). The Dental Institute. 2013;(4):42-45 (In Russ.). Available from: https://www.elibrary.ru/item.asp?id=22988414
9. Kozhevnikova LA, Dzhabrailova GD, Abdulkerimova SM, Kerimova KN, Pilshchikova OV, Slonova VM, Gevorkyan AА. Comparative analysis of maxillary expansion techniques using orthodontic appliances. Endodontics Today. 2019;17(4):58-62 (In Russ.). doi: 10.36377/1683-2981-2019-17-4-58-62
10. Simakova AA, Gizoeva EA, Gasparyan KA, Grijbovski AM, Gorbatova MA. Rapid maxillary expansion in different age-groups: a case-series presentation. Science & Healthcare. 2022;24(1):207-211 (In Russ.). doi: 10.34689/SH.2021.24.1.023
11. Popova NV, Arsenina OI, Makhortova PI, Popova AV, Shugaĭlov IA. Complex orthodontic-surgical rehabilitation of adults with malocclusions and deformations in dentition. Stomatology. 2020;99(2):66 78 (In Russ.). doi: 10.17116/stomat20209902166
12. Takarevich IV, Khomich AS. Effects of tooth-borne rapid maxillary expansion. Sovremennaya stomatologiya. 2017;(3):4-7 (In Russ.). Available from: https://cyberleninka.ru/article/n/osobennosti-bystrogo-rasshireniya-verhney-chelyusti-apparatami-soporoy-na-zuby
13. Takarevich IV, Khomich AS. Evaluation of parameters of skeletal maxillary expansion achieved with tooth- and bone-borne expanders. Sovremennaya stomatologiya. 2018;(2):44-50 (In Russ.). Available from: https://cyberleninka.ru/article/n/otsenka-parametrov-skeletnogo-rasshireniya-verhney-chelyusti-apparatami-s-raznym-tipom-opory
14. Takarevich I, Khomich A. Results of clinical application of bone-borne maxillary expander. Stomatologicheskij zhurnal. 2018;19(4):294-298 (In Russ.). Available from: https://www.elibrary.ru/item.asp?id=38186186&
15. Yaremenko AI, Chibisova MA, Zubareva AA, Lanina AN, Pakhomova NV, Grachev DI. Minimally invasive surgical expansion of the upper jaw in adult patients using a device with bone fixation. The Dental institute. 2022;(1):16-17 (In Russ.). Available from: https://elibrary.ru/item.asp?id=48213662
16. Andreishchev AR, Gorban VV, Rudoman SO, Godin GV, Krivoshein VV. Surgically associated expansion of the maxilla and mandible in the outpatient clinic. Sovremennaya stomatologiya. 2022;(4):31-36 (In Russ.). Available from: https://cyberleninka.ru/article/n/hirurgicheski-assotsiirovannoe-rasshirenie-verhney-i-nizhney-chelyustey-v-ambulatornyh-usloviyah
17. Klipa IA, Drobyshev AY, Drobysheva NS, Kozlova AV, Vodakhova AA. Surgical expansion of the maxilla in the complex treatment of adult patients with gnathic forms of dentoalveolar anomalies. Dental Forum. 2012;(3):45-46. Available from: https://elibrary.ru/item.asp?id=17735396
18. Nikolaev AV, Andreishchev AR, Kutukova SI. Comparative biomechanical study of surgically assisted rapid palatal expansion with tooth-borne and bone-borne expanders. Stomatology. 2017;96(5):48-55 (In Russ.). doi: 10.17116/stomat201796548-55
19. Nikolaev AV, Popov SA, Satygo EA. Comparison of the surgically assisted rapid palatal expansion results using diff erent types of expansion appliances. The Dental institute. 2019;(4):62-63 (In Russ.). Available from: https://instom.spb.ru/catalog/article/14161/
20. Jensen T, Rodrigo-Domingo M. Surgically assisted rapid maxillary expansion (SARME) with or without intraoperative releasing of the nasal septum. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123(3):e85-e90 doi: 10.1016/j.oooo.2016.10.003
21. Kayalar E, Schauseil M, Kuvat SV, Emekli U, Fıratlı S. Comparison of tooth-borne and hybrid devices in surgically assisted rapid maxillary expansion: A randomized clinical cone-beam computed tomography study. J Craniomaxillofac Surg. 2016;44(3):285-293. doi: 10.1016/j.jcms.2015.12.001
22. Loriato L, Ferreira CE. Surgically-assisted rapid maxillary expansion (SARME): indications, planning and treatment of severe maxillary deficiency in an adult patient. Dental Press J Orthod. 2020;25(3):73-84. doi: 10.1590/2177-6709.25.3.073-084.bbo
23. Pereira MD, de Abreu RA, Prado GP, Ferreira LM. Strategies for surgically assisted rapid maxillary expansion according to the region of transverse maxillary deficiency. Int J Oral Maxillofac Surg. 2012;Sep;41(9):1127-30. doi: 10.1016/j.ijom.2012.03.028
24. Tarasyuk IA, Kravchuk AS. Calculation of effective elastic parameters for isotropic composite body in the case of application of Hooke’s law for the cauchy strain tensor. APRIORI. Seriya: Estestvennye i tehnicheskie nauki. 2015;(3):29 (In Russ.). Available from: https://www.elibrary.ru/item.asp?id=23653191
25. Arahira T, Todo M. Biomechanical Analysis of Jaw Bone with Cyst Using CT-Image Based Finite Element Method. Dent Res Oral Health. 2018;1(2):7-16. doi: 10.26502/droh.002
26. Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech. 1998;31(2):125-133. doi: 10.1016/s0021-9290(97)00123-1
Supplementary files
Review
For citations:
Minnakhmetova D.R., Topolnitsky O.Z., Dudetsky A.D., Panchenko I.M., Glukhonemykh E.E., Barinova A.A., Agoshkova E.E., Ryabchikova A.M., Kalitnik A.A., Khodakovskiy I.A. Development of a physicomathematical model of distraction osteogenesis to improve the treatment of transverse dentofacial anomalies in pediatric patients. Pediatric dentistry and dental prophylaxis. 2025;25(2). (In Russ.) https://doi.org/10.33925/1683-3031-2025-910