Assessment of oral tissue status and selected parameters of mixed saliva in children with hypophosphatemic rickets
https://doi.org/10.33925/1683-3031-2025-896
Abstract
Relevance. Genetically determined metabolic disorders and the resulting hypomineralization of dental and periodontal tissues may increase the risk of inflammation and structural damage in the oral tissues of children with hypophosphatemic rickets (HR).
Materials and methods. The study involved 46 children aged 6–17 years, including 29 diagnosed with hypophosphatemic rickets (HR) and 17 practically healthy controls. Oral hygiene was assessed using the Fedorov–Volodkina Hygiene Index and the Simplified Oral Hygiene Index (OHI-S) by Green and Vermillion. The severity of dental caries and its complications in primary and permanent teeth was evaluated using the dft/DMFT and pufa/PUFA indices, respectively. Periodontal status was assessed using the PMA index, while gingival sulcus bleeding was evaluated using the Sulcus Bleeding Index (SBI). Levels of monocyte chemoattractant protein-1 (MCP-1), vascular endothelial growth factor (VEGF), procalcitonin (PCT), and D-dimer in mixed saliva were measured using solid-phase enzyme-linked immunosorbent assay (ELISA) kits (Vector-Best, Russia).
Results. Children with HR exhibited unsatisfactory oral hygiene and moderate periodontal inflammation. The pufa/PUFA index was 7.6 times higher in this group compared to healthy controls. These clinical findings were accompanied by significant differences in salivary biochemical parameters, including elevated levels of MCP-1, VEGF, PCT, and D-dimer. A positive correlation was observed between MCP-1 and PCT, as well as between MCP-1 and VEGF (r = 0.49 and r = 0.59, respectively; p < 0.05), suggesting a potential prognostic role of these biomarkers in the development of oral inflammation in children with HR.
Conclusion. Children with hypophosphatemic rickets showed clear signs of periodontal inflammation. The detection of MCP-1, VEGF, and D-dimer in mixed saliva highlights their diagnostic potential as markers of inflammatory activity in the oral cavity in this patient population.
About the Authors
I. A. AlekseevaRussian Federation
Irina A. Alekseeva, DMD, PhD, Assistant Professor, Department of the Pediatric Dentistry
Dolgorukovskaya St., 4, Moscow, Russian Federation, 127006
L. P. Kiselnikova
Russian Federation
Larisa P. Kiselnikova, DMD, PhD, DSc, Professor, Head of the Department of Pediatric Dentistry
Moscow
I. G. Ostrovskaya
Russian Federation
Irina G. Ostrovskaya, DMD, PhD, DSc, Professor, Department of the Biochemistry
Moscow
References
1. Lee JY, Imel EA. The changing face of hypophosphatemic disorders in the FGF-23 era. Pediatr Endocrinol Rev. 2013;10;Suppl2(02):367-379. Available from: https://pubmed.ncbi.nlm.nih.gov/23858620/
2. Clarke BL. Phosphorus disorders: hypophosphatemic rickets In: Camacho P, edotor. Metabolic Bone Diseases. Springer, Cham. 2019:83–98. doi: 10.1007/978-3-030-03694-2
3. Kulikova KS, Kolodkina AA, Vasiliev EV, Petrov VM, Gorbach EN, Gofman FF, et al. Clinical, hormonal, biochemical and genetic characteristics of 75 patients with hypophosphatemic rickets. Problems of Endocrinology. 2016;62(2):31-36. doi: 10.14341/probl201662231-36
4. Coyac BR, Hoac B, Chafey P, Falgayrac G, Slimani L, Rowe PS, et al. Defective Mineralization in X-Linked Hypophosphatemia Dental Pulp Cell Cultures. J Dent Res. 2018;97(2):184-191. doi: 10.1177/0022034517728497
5. Yuanyuan W, Jie C, Nan W, Yuming Z, Lihong G, Man QG. . Mutation survey of the PHEX gene and oral manifestation in achinese family with X-linked dominant hypophosphatemic rickets. Dentistry. 2016;(6):12. doi: 10.4172/2161-1122.1000402
6. Baroncelli GI, Zampollo E, Manca M, Toschi B, Bertelloni S, Michelucci A, et al. Pulp chamber features, prevalence of abscesses, disease severity, and PHEX mutation in X-linked hypophosphatemic rickets. J Bone Miner Metab. 2021;39(2):212-223. doi: 10.1007/s00774-020-01136-8
7. Gupta M, Chaturvedi R, Jain A. Role of monocyte chemoattractant protein-1 (MCP-1) as an immune-diagnostic biomarker in the pathogenesis of chronic periodontal disease. Cytokine. 2013;61(3):892-897. doi: 10.1016/j.cyto.2012.12.012
8. Nisha KJ, Suresh A, Anilkumar A, Padmanabhan S. MIP-1α and MCP-1 as salivary biomarkers in periodontal disease. Saudi Dent J. 2018;30(4):292-298. doi: 10.1016/j.sdentj.2018.07.002
9. Bazarnyi VV, Mandra YuV, Polushina LG, Maksimova AYu, Svetlakova EN. Clinical value of oral fluid chemokines in chronic periodontitis. Medical Immunology (Russia). 2021;23(2):345-352 (In Russ.). doi: 10.15789/1563-0625-CVO-2162
10. Lorenzo-Pouso AI, Pérez-Sayáns M, Bravo SB, López-Jornet P, García-Vence M, Alonso-Sampedro M, et al. Protein-based salivary profiles as novel biomarkers for oral diseases. Dis Markers. 2018;7;2018:6141845. doi: 10.1155/2018/6141845
11. Milanowski M, Pomastowski P, Ligor T, Buszewski B. Saliva – Volatile Biomarkers and Profiles. Crit Rev Anal Chem. 2017 47(3):251-266. doi: 10.1080/10408347.2016.1266925
12. Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity. 2012;36(5):705-716. doi: 10.1016/j.immuni.2012.05.008
13. Silva TA, Garlet GP, Fukada SY, Silva JS, Cunha FQ. Chemokines in oral inflammatory diseases: apical periodontitis and periodontal disease. J Dent Res. 2007;86(4):306-319. doi: 10.1177/154405910708600403
14. Stadler AF, Angst PD, Arce RM, Gomes SC, Oppermann RV, Susin C. Gingival crevicular fluid levels of cytokines/chemokines in chronic periodontitis: a meta-analysis. J Clin Periodontol. 2016;43(9):727-45. doi: 10.1111/jcpe.12557
15. Rahajoe PS, Smit MJ, Kertia N, Westra J, Vissink A. Cytokines in gingivocrevicular fluid of rheumatoid arthritis patients: A review of the literature. Oral Dis. 2019;25(6):1423-1434. doi: 10.1111/odi.13145
16. Bassim CW, Redman RS, DeNucci DJ, Becker KL, Nylen ES. Salivary procalcitonin and periodontitis in diabetes. J Dent Res. 2008;87(7):630-634. doi: 10.1177/154405910808700707
17. Lapin SV, Maslyanskiy AL, Lazareva NM, Vasilyeva YeYu, Totolyan AA. The value of quantitative analysis of procalcitonine in diagnostics of septic complications in patients with autoimmune rheumatic diseases. Russian clinical laboratory diagnostics. 2013;(1):28-33 (In Russ.). Available from: https://elibrary.ru/item.asp?id=18791009
18. Patel N, Belcher J, Thorpe G, Forsyth NR, Spiteri MA. Measurement of C-reactive protein, procalcitonin and neutrophil elastase in saliva of COPD patients and healthy controls: correlation to self-reported wellbeing parameters. Respir Res. 2015;6(1):62. doi: 10.1186/s12931-015-0219-1
19. Hendek MK, Erdemir EO, Kisa U. Evaluation of salivary procalcitonin levels in different periodontal diseases. J Periodontol. 2015;86(6):820-826. doi: 10.1902/jop.2015.130751
20. Gileva OS, Mandra YV, Sivak EY, Polushina LG, Libik TV, Мaksimova AY, et al. Normal concentration of oral fluid procalcitonin and concentration in periodontitis. Perm Medical Journal. 2021;38(4):62-69 (In Russ.). doi: 10.17816/pmj38462-69
21. Hu K, Olsen BR. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone. 2016;91:30-38. doi: 10.1016/j.bone.2016.06.013
22. Lee HY, Min KH, Lee SM, Lee JE, Rhee CK. Clinical significance of serum vascular endothelial growth factor in young male asthma patients. Korean J Intern Med. 2017;32(2):295-301. doi: 10.3904/kjim.2014.242
23. Ramakrishnan S, Anand V, Roy S. Vascular endothelial growth factor signaling in hypoxia and inflammation. J Neuroimmune Pharmacol. 2014;9(2):142-160. doi: 10.1007/s11481-014-9531-7
24. Mudrov VP, Nelyubin VN, Vorobieva ES, Lysiuk EYu, Miandiev MS, Fomenkov IS, et al. The use of growth factors in periodontitis treatment. Medical Immunology (Russia). 2018;20(3):439-444 (In Russ.). doi: 10.15789/1563-0625-2018-3-439-444
25. Afacan B, Öztürk VÖ, Paşalı Ç, Bozkurt E, Köse T, Emingil G. Gingival crevicular fluid and salivary HIF-1α, VEGF, and TNF-α levels in periodontal health and disease. J Periodontol. 2019 Jul;90(7):788-797. doi: 10.1002/JPER.18-0412
26. Pradeep AR, Prapulla DV, Sharma A, Sujatha PB. Gingival crevicular fluid and serum vascular endothelial growth factor: their relationship in periodontal health, disease and after treatment. Cytokine. 2011;54(2):200-204. doi: 10.1016/j.cyto.2011.02.010
27. Prapulla DV, Sujatha PB, Pradeep AR. Gingival crevicular fluid VEGF levels in periodontal health and disease. J Periodontol. 2007;78(9):1783-1787. doi: 10.1902/jop.2007.070009
28. Sosnin DYu, Gileva OS, Sivak EYu, Daurova FYu, Gibadullina NV, Korotin SV. The content of vascular en dothelial grow factor in saliva and serum in patients with periodontitis. Klinicheskaya Laboratornaya Diagnostika (Russian Clini cal Laboratory Diagnostics). 2019;64(11):663-668 (In Russ.). doi: 10.18821/0869-2084-2019-64-11-663-668
29. Drążewski D, Grzymisławska M, Korybalska K, Czepulis N, Grzymisławski M, Witowski J, et al. Oral Health Status of Patients with Lysosomal Storage Diseases in Poland. Int J Environ Res Public Health. 2017;14(3):281. doi: 10.3390/ijerph14030281
30. Shishkin AN, Kirilyuk DV. Endothelial dysfunction in patients with progressive renal disease. Nephrology (Saint-Petersburg). 2005;9(2):16-22 (In Russ.). doi: 10.24884/1561-6274-2005-9-2-16-22
31. Maurer B, Distler A, Suliman YA, Gay RE, Michel BA, Gay S, et al. Vascular endothelial growth factor aggravates fibrosis and vasculopathy in experimental models of systemic sclerosis. Ann Rheum Dis. 2014;73(10):1880-1887. doi: 10.1136/annrheumdis-2013-203535
32. Yanushevish OO, Dukhovskaya HE, Vavilova TP, Ostrovskiy YA, Kurbanova ZT, Ostrovskaya Yu.A. Saliva as new analytical object for D-dimer level determination. Klinicheskaya Laboratornaya Diagnostika (Russian Clinical Labora tory Diagnostics). 2021;66 (7):407-410 (In Russ.). doi: 10.51620/0869-2084-2021-66-7-407-410
Review
For citations:
Alekseeva I.A., Kiselnikova L.P., Ostrovskaya I.G. Assessment of oral tissue status and selected parameters of mixed saliva in children with hypophosphatemic rickets. Pediatric dentistry and dental prophylaxis. 2025;25(2). (In Russ.) https://doi.org/10.33925/1683-3031-2025-896